【實用教育app】Data Mining & Data Warehousing|最夯免費app

【實用教育app】Data Mining & Data Warehousing|最夯免費app

分享好友

【免費教育App】Data Mining & Data Warehousing-APP點子

This ultimate unique application is for all students of Data Mining & Data Warehousing across the world. It covers 200 topics of Data Mining & Data Warehousing in detail. These 200 topics are divided in 5 units.

Each topic is around 600 words and is complete with diagrams, equations and other forms of graphical representations along with simple text explaining the concept in detail.

The USP of this application is "ultra-portability". Students can access the content on-the-go from any where they like.

Basically, each topic is like a detailed flash card and will make the lives of students simpler and easier.

Some of topics Covered in this application are:

1. Introduction to Data mining

2. Data Architecture

3. Data-Warehouses

4. Relational Databases

5. Transactional Databases

6. Advanced Data and Information Systems and Advanced Applications

7. Data Mining Functionalities

8. Classification of Data Mining Systems

9. Data Mining Task Primitives

10. Integration of a Data Mining System with a DataWarehouse System

11. Major Issues in Data Mining

12. Performance issues in Data Mining

13. Introduction to Data Preprocess

14. Descriptive Data Summarization

15. Measuring the Dispersion of Data

16. Graphic Displays of Basic Descriptive Data Summaries

17. Data Cleaning

18. Noisy Data

19. Data Cleaning Process

20. Data Integration and Transformation

21. Data Transformation

22. Data Reduction

23. Dimensionality Reduction

24. Numerosity Reduction

25. Clustering and Sampling

26. Data Discretization and Concept Hierarchy Generation

27. Concept Hierarchy Generation for Categorical Data

28. Introduction to Data warehouses

29. Differences between Operational Database Systems and Data Warehouses

30. A Multidimensional Data Model

31. A Multidimensional Data Model

32. Data Warehouse Architecture

33. The Process of Data Warehouse Design

34. A Three-Tier Data Warehouse Architecture

35. Data Warehouse Back-End Tools and Utilities

36. Types of OLAP Servers: ROLAP versus MOLAP versus HOLAP

37. Data Warehouse Implementation

【免費教育App】Data Mining & Data Warehousing-APP點子

38. Data Warehousing to Data Mining

39. On-Line Analytical Processing to On-Line Analytical Mining

40. Methods for Data Cube Computation

41. Multiway Array Aggregation for Full Cube Computation

42. Star-Cubing: Computing Iceberg Cubes Using a Dynamic Star-tree Structure

43. Pre-computing Shell Fragments for Fast High-Dimensional OLAP

44. Driven Exploration of Data Cubes

45. Complex Aggregation at Multiple Granularity: Multi feature Cubes

46. Attribute-Oriented Induction

47. Attribute-Oriented Induction for Data Characterization

48. Efficient Implementation of Attribute-Oriented Induction

49. Mining Class Comparisons: Discriminating between Different Classes

50. Frequent patterns

51. The Apriori Algorithm

52. Efficient and scalable frequently itemset mining methods

53. Mining Frequent Itemsets Using Vertical Data Format

54. Mining Multilevel Association Rules

55. Mining Multidimensional Association Rules

56. Mining Quantitative Association Rules

57. Association Mining to Correlation Analysis

58. Constraint-Based Association Mining

59. Introduction to classification and prediction

60. Preparing the Data for Classification and Prediction

61. Comparing Classification and Prediction Methods

62. Classification by Decision Tree Induction

63. Decision Tree Induction

64. Tree Pruning

65. Scalability and Decision Tree Induction

66. Bayesian Classification

67. Naive Bayesian Classification

68. Bayesian Belief Networks

69. Training Bayesian Belief Networks

70. Using IF-THEN Rules for Classification

71. Rule Extraction from a Decision Tree

72. Rule Induction Using a Sequential Covering Algorithm

73. Rule Pruning

74. Introduction to Back propagation

75. A Multilayer Feed-Forward Neural Network

76. Defining a Network Topology

77. Support Vector Machines

78. Associative Classification: Classification by Association Rule Analysis

79. Evaluating the Accuracy of a Classifier or Predictor

【免費教育App】Data Mining & Data Warehousing-APP點子

All topics not listed due to character limitations.

【免費教育App】Data Mining & Data Warehousing-APP點子

免費玩Data Mining & Data Warehousing APP玩免費

免費玩Data Mining & Data Warehousing App

Data Mining & Data Warehousing APP LOGO

Data Mining & Data Warehousing LOGO-APP點子

Data Mining & Data Warehousing APP QRCode

Data Mining & Data Warehousing QRCode-APP點子
熱門國家系統支援版本費用APP評分上架日期更新日期
未知Android
Google Play
1
App下載
INR$60.0
1970-01-012015-01-14
分享app
上一個APP
下一個APP

高評價教育App推薦

油漆式速記法-日文檢定N1級

JLPT(Japanese Language Proficiency Test, 日本語能力試驗)是一種公信度高的日本語能力的國際性檢測,由日本國際教育支援協會及日本國際交流基金會共同舉辦。2010年起JLPT開始實施新制,測驗級數由四個級數改為五個級數,由難至易依序為N1~N5。N4和N5主要檢測 …
油漆式速记法-日文检定N3级简体版

JLPT(Japanese Language Proficiency Test, 日本语能力试验)是一种公信度高的日本语能力的国际性检测,由日本国际教育支持协会及日本国际交流基金会共同举办。2010年起JLPT开始实施新制,测验级数由四个级数改为五个级数,由难至易依序为N1~N5。N4和N5主要检测 …
油漆式速記法-日文檢定N3級

JLPT(Japanese Language Proficiency Test, 日本語能力試驗)是一種公信度高的日本語能力的國際性檢測,由日本國際教育支援協會及日本國際交流基金會共同舉辦。2010年起JLPT開始實施新制,測驗級數由四個級數改為五個級數,由難至易依序為N1~N5。N4和N5主要檢測 …
油漆式速記法-觀光旅遊日語專業字彙

「油漆式速記法」結合「大量、全腦、多層次」的基本理論,融合右腦直覺性速讀與左腦思考性測驗,加入多重感官刺激,讓學習者利用視覺(瞬間記憶)、聽覺(母語人士真人發音)、觸覺(鍵盤或觸控操作)迅速將日文詞彙轉換為長期記憶。由於這套方法在各校使用的情況不錯,實踐大學高雄校區觀光管理學系高琪雅老師與我們公司產 …